Simulations of black-hole binaries with unequal masses or non-precessing spins: accuracy, physical properties, and comparison with post-Newtonian results

Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

21 pages, 9 figures, 6 tables. Version accepted by PRD

Scientific paper

10.1103/PhysRevD.82.124008

We present gravitational waveforms for the last orbits and merger of black-hole-binary (BBH) systems along two branches of the BBH parameter space: equal-mass binaries with equal non-precessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each BH is $\chi_i = S_i/M_i^2 \in [-0.85,0.85]$, and along the unequal-mass branch the mass ratio is $q =M_2/M_1 \in [1,4]$. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged BH, and compare the last 8-10 GW cycles up to $M\omega = 0.1$ with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins $\chi_i > -0.75$. When high-order amplitude corrections are included, the PN amplitude of the $(\ell=2,m=\pm2)$ modes is larger than the NR amplitude by between 2-4%.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Simulations of black-hole binaries with unequal masses or non-precessing spins: accuracy, physical properties, and comparison with post-Newtonian results does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Simulations of black-hole binaries with unequal masses or non-precessing spins: accuracy, physical properties, and comparison with post-Newtonian results, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Simulations of black-hole binaries with unequal masses or non-precessing spins: accuracy, physical properties, and comparison with post-Newtonian results will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-321821

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.