Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2011-08-25
Phys. Rev. D 85, 023535 (2012)
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
22 pages, 8 figures, 3 tables. Minor changes, including formatting, to reflect published version. Some references updated and
Scientific paper
10.1103/PhysRevD.85.023535
We investigate a novel approach to measuring the Hubble constant using gravitational-wave (GW) signals from compact binaries by exploiting the narrowness of the distribution of masses of the underlying neutron-star population. Gravitational-wave observations with a network of detectors will permit a direct, independent measurement of the distance to the source systems. If the redshift of the source is known, these inspiraling double-neutron-star binary systems can be used as standard sirens to extract cosmological information. Unfortunately, the redshift and the system chirp mass are degenerate in GW observations. Thus, most previous work has assumed that the source redshift is obtained from electromagnetic counterparts. In this paper, we explore what we can learn about the background cosmology and the mass distribution of neutron stars from the set of neutron-star (NS) mergers detected by such a network. We use a Bayesian formalism to analyze catalogs of NS-NS inspiral detections. We find that it is possible to constrain the Hubble constant, H_0, and the parameters of the NS mass function using gravitational-wave data alone, without relying on electromagnetic counterparts. Under reasonable assumptions, we will be able to determine H_0 to +/- 10% using ~100 observations, provided the Gaussian half-width of the underlying double NS mass distribution is less than 0.04 solar masses. The expected precision depends linearly on the intrinsic width of the NS mass function, but has only a weak dependence on H_0 near the default parameter values. Finally, we consider what happens if, for some fraction of our data catalog, we have an electromagnetically measured redshift. The detection, and cataloging, of these compact-object mergers will allow precision astronomy, and provide a determination of H_0 which is independent of the local distance scale.
Gair Jonathan R.
Mandel Ilya
Taylor Stephen R.
No associations
LandOfFree
Hubble without the Hubble: cosmology using advanced gravitational-wave detectors alone does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Hubble without the Hubble: cosmology using advanced gravitational-wave detectors alone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hubble without the Hubble: cosmology using advanced gravitational-wave detectors alone will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-319444