The effect of a finite mass reservoir on the collapse of spherical isothermal clouds and the evolution of protostellar accretion

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11 pages, 8 figures, accepted for publication in MNRAS

Scientific paper

10.1111/j.1365-2966.2005.09062.x

Motivated by recent observations which detect an outer boundary for starless cores, and evidence for time-dependent mass accretion in the Class 0 and Class I protostellar phases, we reexamine the case of spherical isothermal collapse in the case of a finite mass reservoir. The presence of a core boundary results in the generation of an inward propagating rarefaction wave. This steepens the gas density profile from r^{-2} to r^{-3} or steeper. After a protostar forms, the mass accretion rate \dot{M} evolves through three distinct phases: (1) an early phase of decline in \dot{M}, which is a non-self-similar effect due to spatially nonuniform infall in the prestellar phase; (2) for large cores, an intermediate phase of near-constant \dot{M} from the infall of the outer part of the self-similar density profile; (3) a late phase of rapid decline in \dot{M} when accretion occurs from the region affected by the inward propagating rarefaction wave. Our model clouds of small to intermediate size make a direct transition from phase (1) to phase (3) above. Both the first and second phase are characterized by a temporally increasing bolometric luminosity L_bol, while L_bol is decreasing in the third (final) phase. We identify the period of temporally increasing L_bol with the Class 0 phase, and the later period of terminal accretion and decreasing L_bol with the Class I phase. The peak in L_bol corresponds to the evolutionary time when 50% \pm 10% of the cloud mass has been accreted by the protostar. This is in agreement with the classification scheme proposed by Andre et al. (1993). We show how our results can be used to explain tracks of envelope mass M_env versus L_bol for protostars in Taurus and Ophiuchus. We also develop an analytic formalism which reproduces the protostellar accretion rate.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The effect of a finite mass reservoir on the collapse of spherical isothermal clouds and the evolution of protostellar accretion does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The effect of a finite mass reservoir on the collapse of spherical isothermal clouds and the evolution of protostellar accretion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The effect of a finite mass reservoir on the collapse of spherical isothermal clouds and the evolution of protostellar accretion will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-302107

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.