Secular Instability and Planetesimal Formation in the Dust Layer

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

25 pp., 2 figures. Uses aastex version 5.02

Scientific paper

10.1006/icar.2000.6467

Late in the gaseous phase of a protostellar disk, centimeter-sized bodies probably settle into a thin ``dust layer'' at the midplane. A velocity difference between the dust layer and the gas gives rise to turbulence, which prevents further settling and direct gravitational instability of the layer. The associated drag on the surface of the layer causes orbital decay in a few thousand years---as opposed to a few hundred years for an isolated meter-sized body. Within this widely-accepted theoretical framework, we show that the turbulent drag causes radial instabilities even if the selfgravity of the layer is negligible. We formulate axisymmetric, height-integrated dynamical equations for the layer that incorporate turbulent diffusion of mass and momentum in radius and height, vertical settling, selfgravity, and resistance to compression due to gas entrained within the dust layer. In steady-state, the equations describe the inward radial drift of a uniform dust layer. In perturbation, overdense rings form on an orbital timescale with widths comparable to the dust-layer thickness. Selfgravity is almost irrelevant to the linear growth rate but will eventually fragment and collapse the rings into planetesimals larger than a kilometer. We estimate that the drag instability is most efficient at 1 AU when most of the ``dust'' mass lies in the size range 0.1-10 meters.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Secular Instability and Planetesimal Formation in the Dust Layer does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Secular Instability and Planetesimal Formation in the Dust Layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Secular Instability and Planetesimal Formation in the Dust Layer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-295569

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.