Astronomy and Astrophysics – Astrophysics
Scientific paper
2003-01-03
Mon.Not.Roy.Astron.Soc. 340 (2003) 989
Astronomy and Astrophysics
Astrophysics
27 pages, accepted for publication in MNRAS; uses longtable.sty & lscape.sty
Scientific paper
10.1046/j.1365-8711.2003.06401.x
We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)
Finoguenov Alexis
Lloyd-Davies Ed J.
Markevitch Maxim
Ponman Trevor J.
Sanderson Alastair J. R.
No associations
LandOfFree
The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-289571