The IMF in Extreme Star-Forming Environments: Searching for Variations vs. Initial Conditions

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6 pages, 3 figures, to appear in the proceedings of IAU Symposium 227: "Massive Star Birth: A Crossroads of Astrophysics"

Scientific paper

10.1017/S1743921305004643

Any predictive theory of star formation must explain observed variations (or lack thereof) in the initial mass function. Recent work suggests that we might expect quantitative variations in the IMF as a function of metallicity (Larson 2005) or magnetic field strength (Shu et al. 2004). We summarize results from several on-going studies attempting to constrain the ratio of high to low mass stars, as well as stars to sub- stellar objects, in a variety of different environments, all containing high mass stars. First, we examine the ratio of stars to sub--stellar objects in the nearby Mon R2 region utilizing NICMOS/HST data. We compare our results to the IMF by Kroupa (2002)]} and to the observed ratios for IC 348 and Orion. Second, we present preliminary results for the ratio of high to low mass stars in W51, the most luminous HII region in the galaxy. Based on ground--based multi--colour images of the cluster obtained with the MMT adaptive optics system, we derive a lower limit to the ratio of high-mass to low-mass stars and compare it to the ratios for nearby clusters. Finally, we present the derived IMF for the R136 region in the LMC where the metallicity is 1/4 solar using HST/NICMOS data. We find that the IMF is consistent with that characterizing the field (Chabrier 2003), as well as nearby star--forming regions, down to 1.0 Msun outside 2 pc. Whereas the results for both Mon R2 and R136 are consistent with the nearby clusters, the ratio of high to low mass stars in W51 tentatively indicates a lack of low--mass objects.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The IMF in Extreme Star-Forming Environments: Searching for Variations vs. Initial Conditions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The IMF in Extreme Star-Forming Environments: Searching for Variations vs. Initial Conditions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The IMF in Extreme Star-Forming Environments: Searching for Variations vs. Initial Conditions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-289213

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.