Time Aperiodic Perturbations of Integrable Hamiltonian Systems

Nonlinear Sciences – Exactly Solvable and Integrable Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We consider a Hamiltonian $H=H^{0}(p)+\kappa H^{1}(p,q,t)$, $(p,q)\in {\mathbb{R}}^{n} \times {\mathbb{T}}^n$, $t\in{\mathbb{R}}$ where $\kappa \in {\mathbb{R}}$ is a small perturbation parameter and $p$, $q$ are the action and angle variables respectively. The Hamiltonian generates an autonomous vector field obtained by extending the phase space making $t$ a dependent variable and adding its conjugate variable $\tau$. In this paper we look at a time aperiodic perturbation $H^{1}(p,q,t)$ which tends as $t\to \infty$ to either a time independent perturbation or a time quasiperiodic perturbation and we prove a KAM-type theorem. Extending the phase space results in the preservation under a small enough perturbation of cylinders of the extended autonomous system rather than the usual tori. To prove the theorem we transform the Hamiltonian $H$ to a normal form which depends on fewer angles, none if possible. This transformation is done via a near identity canonical transformation. The canonical transformation is constructed using the Lie series formalism and by solving for a generating function. Because of the aperiodic time dependence, the usual Fourier series methods used to obtain the generating function no longer apply. Instead, we use Fourier transform methods to solve for the generating function and make use of an isoenergetic non-degeneracy condition which results in a shift of frequencies associated with each cylinder.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Time Aperiodic Perturbations of Integrable Hamiltonian Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Time Aperiodic Perturbations of Integrable Hamiltonian Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Time Aperiodic Perturbations of Integrable Hamiltonian Systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-28853

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.