Very low metallicity massive star models: Pre-SN evolution and primary nitrogen production

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

A&A accepted, 18 pages, 13 figures WEBLINK: http://quasar.physik.unibas.ch/~hirschi/work/lowz.pdf

Scientific paper

10.1051/0004-6361:20065356

Two series of models were computed. The first series consists of 20 solar mass models with varying initial metallicity (Z=0.02 down to Z=10^{-8}) and rotation (V_{ini}=0-600 km/s). The second one consists of models with an initial metallicity of Z=10^{-8}, masses between 9 and 85 solar masses and fast initial rotation velocities (V_{ini}=600-800 km/s). The most interesting models are the models with Z=10^{-8} ([Fe/H]~-6.6). In the course of helium burning, carbon and oxygen are mixed into the hydrogen burning shell. This boosts the importance of the shell and causes a reduction of the CO core mass. Later in the evolution, the hydrogen shell deepens and produces large amount of primary nitrogen. For the most massive models (M>~60 solar masses), significant mass loss occurs during the red supergiant stage. This mass loss is due to the surface enrichment in CNO elements via rotational and convective mixing. The 85 solar mass model ends up as a WO type Wolf-Rayet star. Therefore the models predict SNe of type Ic and possibly long and soft GRBs at very low metallicities. The rotating 20 solar mass models can best reproduce the observed CNO abundances at the surface of extremely metal poor (EMP) stars and the metallicity trends when their angular momentum content is the same as at solar metallicity (and therefore have an increasing surface velocity with decreasing metallicity). The wind of the massive star models can also reproduce the CNO abundances of the most metal-poor carbon-rich star known to date, HE1327-2326.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Very low metallicity massive star models: Pre-SN evolution and primary nitrogen production does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Very low metallicity massive star models: Pre-SN evolution and primary nitrogen production, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Very low metallicity massive star models: Pre-SN evolution and primary nitrogen production will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-248425

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.