Mathematics – Rings and Algebras
Scientific paper
2010-01-02
Mathematics
Rings and Algebras
Scientific paper
We show that if a groupoid graded ring has a certain nonzero ideal property, then the commutant of the center of the principal component of the ring has the ideal intersection property, that is it intersects nontrivially every nonzero ideal of the ring. Furthermore, we show that for skew groupoid algebras with commutative principal component, the principal component is maximal commutative if and only if it has the ideal intersection property.
Lundström Patrik
Öinert Johan
No associations
LandOfFree
The Ideal Intersection Property for Groupoid Graded Rings does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Ideal Intersection Property for Groupoid Graded Rings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Ideal Intersection Property for Groupoid Graded Rings will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-233989