Measures of Intermediate Entropies for Skew Product Diffeomorphisms

Mathematics – Dynamical Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages, a few mistakes corrected, some sections seriously rewritten

Scientific paper

In this paper we study a skew product map $F$ with a measure $\mu$ of positive entropy. We show that if on the fibers the map are $C^{1+\alpha}$ diffeomorphisms with nonzero Lyapunov exponents, then $F$ has ergodic measures of intermediate entropies. To construct these measures we find a set on which the return map is a skew product with horseshoes along fibers. We can control the average return time and show the maximum entropy of these measures can be arbitrarily close to $h_\mu(F)$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Measures of Intermediate Entropies for Skew Product Diffeomorphisms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Measures of Intermediate Entropies for Skew Product Diffeomorphisms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Measures of Intermediate Entropies for Skew Product Diffeomorphisms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-205814

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.