Astronomy and Astrophysics – Astrophysics
Scientific paper
1999-09-15
Astronomy and Astrophysics
Astrophysics
4 pages, 2 figures. To appear in `The Hy-redshift universe: Galaxy formation and evolution at high redshift' eds. A.J. Bunker
Scientific paper
The star formation history of the universe shows strong evolution with cosmological epoch. Although we know mergers between galaxies can cause luminous bursts of star formation, the relative importance of such mergers to the global star formation rate (SFR) is unknown. We present a simple analytic formula for the rate at which halos merge to form higher-mass systems, derived from Press-Schechter theory and confirmed by numerical simulations (for high halo masses). A comparison of the evolution in halo formation rate with the observed evolution in the global SFR indicates that the latter is largely driven by halo mergers at z>1. Recent numerical simulations by Kolatt et al. (1999) and Knebe & Muller (1999) show how merging systems are strongly biased tracers of mass fluctuations, thereby explaining the strong clustering observed for Lyman-break galaxies without any need to assume that Lyman-break galaxies are associated only with the most massive systems at z~3.
Ballinger W. E.
Miller Lance L.
Percival Will J.
No associations
LandOfFree
The Halo Formation Rate and its link to the Global Star Formation Rate does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Halo Formation Rate and its link to the Global Star Formation Rate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Halo Formation Rate and its link to the Global Star Formation Rate will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-197174