Mathematics – Algebraic Geometry
Scientific paper
2007-10-29
manuscripta math. 129 (2009), 273--292
Mathematics
Algebraic Geometry
18 pages
Scientific paper
Let X/S be a hyperelliptic curve of genus g over the spectrum of a discrete valuation ring. Two fundamental numerical invariants are attached to X/S: the valuation of the hyperelliptic discriminant of X/S, and the valuation of the Mumford discriminant of X/S (equivalently, the Artin conductor). For a residue field of characteristic 0 as well as for X/S semistable these invariants are known to satisfy certain inequalities. We prove an exact formula relating the two invariants with intersection theoretic data determined by the distribution of Weierstrass points over the special fiber, in the semistable case. We also prove an exact formula for the stable Faltings height of an arbitrary curve over a number field, involving local contributions associated to its Weierstrass points.
No associations
LandOfFree
Local invariants attached to Weierstrass points does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Local invariants attached to Weierstrass points, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Local invariants attached to Weierstrass points will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-19499