Mathematics – Logic
Scientific paper
Dec 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002agufmgp12c..01c&link_type=abstract
American Geophysical Union, Fall Meeting 2002, abstract #GP12C-01
Mathematics
Logic
0400 Biogeosciences, 1527 Paleomagnetism Applied To Geologic Processes, 8121 Dynamics, Convection Currents And Mantle Plumes, 8125 Evolution Of The Earth, 8450 Planetary Volcanism (5480)
Scientific paper
The last half century has been dominated by the general acceptance of plate tectonics. Although the plume concept emerged early in this story, its role has remained ambiguous. Because plumes are singularities, both in space and time, they tend to lie dangerously close to catastrophism, as opposed to the calm uniformitarian view of plate tectonics. Yet, it has become apparent that singular events and transient phenomena are of great importance, even if by definition they cover only a small fraction of geological time, in diverse observational and theoretical fields such as 1) magnetic reversals and the geodynamo, 2) tomography and mantle convection, 3) continental rifting and collision, and 4) evolution of the fluid envelopes (atmospheric and oceanic "climate"; evolution of species in the biosphere). I will emphasize recent work on different types of plumes and on the correlation between flood basalts and mass extinctions. The origin of mantle plumes remains a controversial topic. We suggest that three types of plumes exist, which originate at the three main discontinuities in the Earth's mantle (base of lithosphere, transition zone and core-mantle boundary). Most of the hotspots are short lived (~ 10Ma) and seem to come from the transition zone or above. Important concentrations occur above the Pacific and African superswells. Less than 10 hotspots have been long lived (~ 100Ma) and may have a very deep origin. In the last 50 Ma, these deep-seated plumes in the Pacific and Indo-Atlantic hemispheres have moved slowly, but motion was much faster prior to that. This change correlates with major episodes of true polar wander. The deeper ("primary") plumes are thought to trace global shifts in quadrupolar convection in the lower mantle. These are the plumes that were born as major flood basalts or oceanic plateaus (designated as large igneous provinces or LIPs). Most have an original volume on the order or in excess of 2.5 Mkm3. In most provinces, volcanism lasted on the order of 10 Ma or less, often resulting in continental breakup; the bulk of the volume actually erupted in 1 Ma or less. This makes LIPs the remnants of major geodynamic events, with fluxes possibly matching, over short time scales, the crustal production of mid-ocean ridges. The correlation between trap ages, extinctions and oceanic anoxia events proposed over a decade ago has improved steadily, to the point that trap ages may form much of the underlying structure of the geological time scale. The five largest mass extinctions in the last 260 Ma coincide with five traps, making a causal connection between the two unavoidable. The plume hypothesis provides a useful and exciting complement to the now conventional plate tectonics paradigm, and can provide a unified underlying mechanism to explain the few, key times when Earth's dynamics behaved in a rather catastrophic way, of which our current world bears the memory. Plumes may express couplings between the Earth's very different envelopes. They are a singular mode in which the Earth's engine liberates its heat when normal plate tectonics do not suffice. They may modulate the intensity of many global phenomena, from reversal frequency generated in the liquid core to major continental breakup and finally to mass extinctions. The remarkably rich, diverse and exciting geophysical disciplines of geomagnetism and paleomagnetism, which are the lecturer's main practical tools, have provided many of the key observations that have led to this view.
No associations
LandOfFree
Plumes and Earth's Dynamic History : from Core to Biosphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Plumes and Earth's Dynamic History : from Core to Biosphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plumes and Earth's Dynamic History : from Core to Biosphere will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1892509