Strictly non-proportional geodesically equivalent metrics have $h_\text{top}(g)=0$

Mathematics – Differential Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

This is a slightly extended version of the paper submitted to ETDS. 16 pages, one .eps figure

Scientific paper

Suppose the Riemannian metrics $g$ and $\bar g$ on a closed connected
manifold $M^n$ are geodesically equivalent and strictly non-proportional at
least at one point. Then the topological entropy of the geodesic flow of $g$
vanishes.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Strictly non-proportional geodesically equivalent metrics have $h_\text{top}(g)=0$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Strictly non-proportional geodesically equivalent metrics have $h_\text{top}(g)=0$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Strictly non-proportional geodesically equivalent metrics have $h_\text{top}(g)=0$ will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-188298

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.