Spatial mapping of ices in the Oph-F core: A direct measurement of CO depletion and the formation of CO2

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5 pages, accepted for publication in A&A letters

Scientific paper

10.1051/0004-6361:20065569

Aims: Ices in dense star-forming cores contain the bulk of volatile molecules apart from H2 and thus represent a large fraction of dark cloud chemistry budget.To directly constrain the freeze-out profile of CO, the formation route of CO2 and the carrier of the 6.8 micron band, the spatial distribution of the CO/CO2 ice system and the 6.8 micron band carrier are measured in a nearby dense core. Methods: VLT-ISAAC, ISOCAM-CVF and Spitzer-IRS archival mid-infrared (3-20 micron) spectroscopy of young stellar objects is used to construct a map of the abundances of CO and CO2 ices in the Oph-F star-forming core, probing core radii from 2 10^3 to 14 10^3 AU or densities from 5 10^4 to 5 10^5 cm^-3 with a resolution of ~ 3000 AU. Results: The line-of-sight averaged abundances relative to water ice of both CO and CO2 ices increase monotonously with decreasing distance to the core center. The map traces the shape of the CO abundance profile between freeze-out ratios of 5-60% and shows that the CO2 ice abundance increases by a factor of 2 as the CO freezes out. It is suggested that this indicates a formation route of CO2 on a CO ice surface to produce a CO2 component dilute in CO ice, in addition to a fraction of the CO2 formed at lower densities along with the water ice mantle. It is predicted that the CO2 bending mode band profile should reflect a high CO:CO2 number ratio in the densest parts of dark clouds. In contrast to CO and CO2, the abundance of the carrier of the 6.8 micron band remains relatively constant throughout the core. A simple freeze-out model of the CO abundance profile is used to estimate the binding energy of CO on a CO ice surface to 814+/-30 K.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Spatial mapping of ices in the Oph-F core: A direct measurement of CO depletion and the formation of CO2 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Spatial mapping of ices in the Oph-F core: A direct measurement of CO depletion and the formation of CO2, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spatial mapping of ices in the Oph-F core: A direct measurement of CO depletion and the formation of CO2 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-182378

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.