Other
Scientific paper
Feb 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001aipc..552..230d&link_type=abstract
Space Technology and Applications International Forum - 2001. AIP Conference Proceedings, Volume 552, pp. 230-240 (2001).
Other
Relativity And Gravitation, Gravitational Radiation, Magnetic Fields, And Other Observations, Gravitational Field, Selenodesy, And Magnetic Fields, Spaceborne And Space Research Instruments, Apparatus, And Components
Scientific paper
The discussions, presented in this article, suppose that the reader is familiar with the contents of the accompanying article ``Thermal-Gravitational Modeling and Scaling of Two-Phase Heat Transport Systems from Micro-Gravity to Super-Gravity Levels.'' The latter article describes the history of this particular research at NLR, the approach (based on dimension analysis and similarity considerations), the derivation of constitutive equations for (annular) two-phase flow and heat transfer, the identification of thermal-gravitational scaling possibilities, condensation length issues, and the impact of the magnitude of super-gravity and its direction relative to the flow direction. But the discussions are restricted to ``classical'' two-phase loops. The most recent part of the research is discussed in this follow-up article. It concerns the extension of the research to the modelling, scaling and testing of the steady and transient performance of various types of oscillating or pulsating single-phase and two-phase heat transfer devices. This extension was opportune, as it turned out to be essential to properly support the research and development of such oscillating or pulsating heat transfer devices. For these devices several very promising applications have been identified, not only to cool commercial electronics, but also for cooling high-power electronics in spinning satellites and in military combat aircraft. In such applications, the electronics can be exposed to steady and transient accelerations up to levels around 120 m/s2. .
No associations
LandOfFree
Modeling and Scaling of oscillating or pulsating heat transfer devices subjected to earth gravity and to high acceleration levels does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Modeling and Scaling of oscillating or pulsating heat transfer devices subjected to earth gravity and to high acceleration levels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modeling and Scaling of oscillating or pulsating heat transfer devices subjected to earth gravity and to high acceleration levels will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1711953