Weak disorder asymptotics in the stochastic mean-field model of distance

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Published in at http://dx.doi.org/10.1214/10-AAP753 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Inst

Scientific paper

10.1214/10-AAP753

In the recent past, there has been a concerted effort to develop mathematical models for real-world networks and to analyze various dynamics on these models. One particular problem of significant importance is to understand the effect of random edge lengths or costs on the geometry and flow transporting properties of the network. Two different regimes are of great interest, the weak disorder regime where optimality of a path is determined by the sum of edge weights on the path and the strong disorder regime where optimality of a path is determined by the maximal edge weight on the path. In the context of the stochastic mean-field model of distance, we provide the first mathematically tractable model of weak disorder and show that no transition occurs at finite temperature. Indeed, we show that for every finite temperature, the number of edges on the minimal weight path (i.e., the hopcount) is $\Theta(\log{n})$ and satisfies a central limit theorem with asymptotic means and variances of order $\Theta(\log{n})$, with limiting constants expressible in terms of the Malthusian rate of growth and the mean of the stable-age distribution of an associated continuous-time branching process. More precisely, we take independent and identically distributed edge weights with distribution $E^s$ for some parameter $s>0$, where $E$ is an exponential random variable with mean 1. Then the asymptotic mean and variance of the central limit theorem for the hopcount are $s\log{n}$ and $s^2\log{n}$, respectively. We also find limiting distributional asymptotics for the value of the minimal weight path in terms of extreme value distributions and martingale limits of branching processes.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Weak disorder asymptotics in the stochastic mean-field model of distance does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Weak disorder asymptotics in the stochastic mean-field model of distance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weak disorder asymptotics in the stochastic mean-field model of distance will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-170614

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.