Astronomy and Astrophysics – Astrophysics
Scientific paper
Jan 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009a%26a...493..629z&link_type=abstract
Astronomy and Astrophysics, Volume 493, Issue 2, 2009, pp.629-637
Astronomy and Astrophysics
Astrophysics
8
Sun: Activity, Sun: Flares, Sun: Magnetic Fields, Sun: Filaments
Scientific paper
Context: It is now possible to distinguish between two main models describing the mechanisms responsible for eruptive flares : the standard model, which assumes that most of the energy is released, by magnetic reconnection, in the region hosting the core of a sheared magnetic field, and the breakout model, which assumes reconnection occurs at first in a magnetic arcade overlaying the eruptive features. Aims: We analyze the phenomena observed in NOAA 10486 before and during an X17.2 flare that occurred on 2003 October 28, to study the relationship between the pre-flare and flare phases and determine which model is the most suitable for interpreting this event. Methods: We performed an analysis of multiwavelength data set available for the event using radio data (0.8-4.5 GHz), images in the visible range (WL and Hα), EUV images (1600 and 195 Å), and X-ray data, as well as MDI longitudinal magnetograms. We determined the temporal sequence of events occurring before and during the X17.2 flare and the magnetic field configuration in the linear force-free field approximation. Results: The active region was characterized by a multiple arcade configuration and the X17.2 flare was preceded, by ~2 h, by the partial eruption of one filament. This eruption caused reconnection at null points located in the low atmosphere and a decrease in magnetic tension in the coronal field lines overlaying other filaments present in the active region. As a consequence, these filaments were destabilized and the X17.2 flare occurred. Conclusions: The phenomena observed in NOAA 10486 before and during the X17.2 flare cannot be explained by a simple scenario such as the standard or breakout model, but instead in terms of a so-called domino effect, involving a sequence of destabilizing processes that triggered the flare.
Battiato Viviana
Comparato Marco
Contarino Lidia
Farnik Frantisek
Guglielmino Salvatore L.
No associations
LandOfFree
The X17.2 flare occurred in NOAA 10486: an example of filament destabilization caused by a domino effect does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The X17.2 flare occurred in NOAA 10486: an example of filament destabilization caused by a domino effect, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The X17.2 flare occurred in NOAA 10486: an example of filament destabilization caused by a domino effect will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1695967