Piecewise polynomials, Minkowski weights, and localization on toric varieties

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18 pages. v2: minor expository improvements. To appear in Algebra and Number Theory

Scientific paper

We use localization to describe the restriction map from equivariant Chow cohomology to ordinary Chow cohomology for complete toric varieties in terms of piecewise polynomial functions and Minkowski weights. We compute examples showing that this map is not surjective in general, and that its kernel is not always generated in degree one. We prove a localization formula for mixed volumes of lattice polytopes and, more generally, a Bott residue formula for toric vector bundles.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Piecewise polynomials, Minkowski weights, and localization on toric varieties does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Piecewise polynomials, Minkowski weights, and localization on toric varieties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Piecewise polynomials, Minkowski weights, and localization on toric varieties will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-168533

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.