Refractory inclusions in the unique carbonaceous chondrite Acfer 094

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Acfer 094 is an unshocked, nearly unaltered carbonaceous chondrite with an unusual suite of refractory inclusions. The refractory inclusions in a newly prepared thin section and a small aliquot of disaggregated material were studied to compare the population with previous work, and to report new or unusual inclusion types. A total of 289 Ca-, Al-rich inclusions in the thin section and 67 among the disaggregated material, having a total of 31 different mineral assemblages, were found. Inclusions are largely free of secondary alteration products, and are typically ≤200 μm across. The most common are gehlenitic melilite+spinel±perovskite, spinel+perovskite, and spinel with a thin, silicate rim, typically melilite±diopside. Such rims and (thicker) mantles are very common among Acfer 094 inclusions, and they exhibit a variety of zoning patterns with respect to åkermanite and FeO contents. In the thin section, about 13% of the inclusions contain hibonite and approximately 5% are grossite-bearing; in the disaggregated material, the percentages are 14 and 9, respectively, comparable to previous work. Among the unusual inclusions are a fine-grained, porous, Ti-rich hibonite+spinel+perovskite+melilite inclusion with a compact, coarse, Ti-poor hibonite+spinel+melilite clast; two inclusions in which hibonite has reacted to form grossite; two inclusions with FeO-rich spinel; and a small object consisting of fassaite enclosing euhedral spinel, the first fragment of a Type B inclusion reported from Acfer 094. Inclusions similar to those found in CM or CV chondrites are rare; Acfer 094 contains a distinctive population of inclusions. The population, dominated by small, melilite-bearing inclusions, is most similar to that of CO chondrites. A distinguishing feature is that in Acfer 094, almost every phase in almost every refractory inclusion contains 0.5-1.5 wt% FeO. A lack of diffusion gradients and the pristinity of the matrix imply that the inclusions experienced prolonged exposure to FeO-bearing fluid prior to accretion into the Acfer 094 parent body. There are no known nebular conditions under which the refractory phases found in the present samples could acquire FeO enrichments to the observed levels. The most likely setting is therefore in an earlier, FeO-rich parent body. The inclusions were ejected from this parent body, mixed with typical CAIs, chondrules, amoeboid olivine aggregates, and amorphous material, and incorporated into the Acfer 094 parent body.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Refractory inclusions in the unique carbonaceous chondrite Acfer 094 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Refractory inclusions in the unique carbonaceous chondrite Acfer 094, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refractory inclusions in the unique carbonaceous chondrite Acfer 094 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1681687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.