Astronomy and Astrophysics – Astrophysics
Scientific paper
Apr 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007a%26a...465.1051a&link_type=abstract
Astronomy and Astrophysics, Volume 465, Issue 3, April III 2007, pp.1051-1060
Astronomy and Astrophysics
Astrophysics
26
Planets And Satellites: Formation, Planets And Satellites: General
Scientific paper
We present an evolutionary turbulent model of the Saturn's subnebula consistent with recent core accretion formation models of Saturn. Our calculations are similar to those conducted in the case of the Jovian subnebula, and take into account the vertical structure of the disk, as well as the evolution of its surface density, as given by an α-disk model. Using the thermodynamic conditions of our model, we calculate the evolution of the CO2:CO:CH4 and N2:NH3 molar mixing ratios in the subnebula. We thus show that the carbon and nitrogen homogeneous gas-phase chemistry is inhibited in the subnebula. We also consider the role played by Fischer-Tropsch catalysis in the gas-phase conversions of CO and CO2 into CH4. We demonstrate that, even if a catalytically active zone is likely to exist in the early Saturn's subnebula, it does not alter the composition of volatiles ultimately trapped in the forming solids. We study two different formation scenarios of Titan. In each scenario, we provide observational tests that are compared with measurements made by the Huygens probe. In the first scenario, Titan is formed in a late and cold subnebula from planetesimals produced in Saturn's feeding zone that have been preserved from vaporization. In the second scenario, Titan is formed in a balmy and early subnebula. We show that the first scenario predicts a CO:CH4 molar mixing ratio orders of magnitude larger than the observed one in the atmosphere of Titan, and requires strong variations of water abundance in the solar nebula on short lengthscales, whose origin is not explained. On the contrary, the second scenario does not require such large variations of the abundance of water, and predicts abundances of volatile species in Titan similar to the observed ones.
Alibert Yann
Mousis Oliver
No associations
LandOfFree
Formation of Titan in Saturn's subnebula: constraints from Huygens probe measurements does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Formation of Titan in Saturn's subnebula: constraints from Huygens probe measurements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Formation of Titan in Saturn's subnebula: constraints from Huygens probe measurements will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1679844