Tracing the provenance and recrystallization processes of the Earth's oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm-Nd isotopic study of monazite

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Nd Isotopes, Monazite, Hadean, La-Mc-Icpms, Jack Hills, Mt. Narryer

Scientific paper

Mount Narryer and Jack Hills metasedimentary rocks in the Narryer Gneiss Complex of the Yilgarn Craton, Western Australia, contain zircons with ages up to 4.4 Ga, the oldest known crustal materials on Earth, and monazites up to 3.6 Ga. In this study, we have investigated 147Sm-143Nd systematics of detrital and metamorphic monazites from these metasedimentary rocks using laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS). All detrital monazites have negative initial ɛNd(t) values, indicating that their parental magmas formed by remelting of older crustal materials. A comparison between the initial ɛNd(t) values of the detrital monazites and granitoids in the Narryer Gneiss Complex indicates that the Mt. Narryer and Jack Hills sediments were partly derived from the most isotopically enriched surrounding granitoids with ages of ca. 3.6 and 3.3 Ga. The metamorphic monazites generally have lower initial ɛNd(t) values when compared to the detrital monazites. However, the detrital and metamorphic monazites show similar distributions of ɛNd(t) at the ages of sediment deposition (3.28 Ga for Mt. Narryer and 3.05 Ga for Jack Hills). In addition, multiple analyses on single monazite grains having core-rim structures reveal that the cores and the recrystallized rims had identical Nd isotopic compositions at the time of recrystallization. These findings indicate that older monazites are source of light rare earth elements for younger metamorphic monazite formation and, therefore, that monazite can inherit its primary Sm-Nd isotopic signature during the recrystallization processes. We calculated the Nd model ages for all analyzed monazites to estimate crustal residence time of their source materials. We find that no igneous monazites older than 4.0 Ga were recrystallized to form the monazites. This implies that the lack of Hadean monazites is not due to recrystallization of ancient monazites during later metamorphism, but due to high-Ca compositions of the parental magmas of Hadean detritus, which prevent growth of magmatic monazite.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Tracing the provenance and recrystallization processes of the Earth's oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm-Nd isotopic study of monazite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Tracing the provenance and recrystallization processes of the Earth's oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm-Nd isotopic study of monazite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tracing the provenance and recrystallization processes of the Earth's oldest detritus at Mt. Narryer and Jack Hills, Western Australia: An in situ Sm-Nd isotopic study of monazite will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1673311

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.