Statistics – Applications
Scientific paper
2011-04-14
Annals of Applied Statistics 2011, Vol. 5, No. 1, 232-253
Statistics
Applications
Published in at http://dx.doi.org/10.1214/10-AOAS388 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Ins
Scientific paper
10.1214/10-AOAS388
A number of variable selection methods have been proposed involving nonconvex penalty functions. These methods, which include the smoothly clipped absolute deviation (SCAD) penalty and the minimax concave penalty (MCP), have been demonstrated to have attractive theoretical properties, but model fitting is not a straightforward task, and the resulting solutions may be unstable. Here, we demonstrate the potential of coordinate descent algorithms for fitting these models, establishing theoretical convergence properties and demonstrating that they are significantly faster than competing approaches. In addition, we demonstrate the utility of convexity diagnostics to determine regions of the parameter space in which the objective function is locally convex, even though the penalty is not. Our simulation study and data examples indicate that nonconvex penalties like MCP and SCAD are worthwhile alternatives to the lasso in many applications. In particular, our numerical results suggest that MCP is the preferred approach among the three methods.
Breheny Patrick
Huang Jian
No associations
LandOfFree
Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-166689