High-resolution spectroscopy for Cepheids distance determination. IV. Time series of Hα line profiles

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10

Techniques: Spectroscopic, Stars: Atmospheres, Stars: Oscillations, Stars: Variables: Cepheids, Stars: Distances

Scientific paper

Context: In recent years, infrared interferometry has revealed the presence of faint dusty circumstellar envelopes (CSE) around Cepheids. However the size, shape, chemical nature, and the interaction of the CSE with the star itself are still under investigation. The presence of a CSE might have an effect on the angular diameter estimates used in the interferometric Baade-Wesselink and surface-brightness methods of determining the distance of Cepheids. Aims: By studying Hα profiles as a function of the period, we investigate the permanent mass loss and the CSE around Cepheids. Our high spectral- and time-resolution data, combined with a very good S/N, will be useful in constraining future hydrodynamical models of Cepheids atmosphere and their close environment. Methods: We present HARPS (High Accuracy Radial velocity Planetary Search project developed by the European Southern Observatory.) high-resolution spectroscopy (R = 120 000) of eight galactic Cepheids: R Tra, S Cru, Y Sgr, β Dor, zeta Gem, RZ Vel, ell Car, and RS Pup, providing a good period sampling (P = 3.39 d to P = 41.52 d). The Hα line profiles are described for all stars using a 2D (wavelength versus pulsation phase) representation. For each star, an average spectral line profile is derived, together with its first moment (γ-velocity) and its asymmetry (γ-asymmetry). Results: Short-period Cepheids show Hα line profiles following the pulsating envelope of the star, while long-period Cepheids show very complex line profiles and, in particular, large asymmetries. We find a new relationship between the period of Cepheids and their γ-velocities and -asymmetries. These results may be related to the dynamical structure of the atmosphere and to a permanent mass loss of Cepheids. In particular, we confirm for ell Car a dominant absorption component whose velocity is constant and nearly of zero km s-1 in the stellar rest frame. This component is attributed to the presence of circumstellar envelope. Conclusions: To understand these very subtle γ effects, fully consistent hydrodynamical models are required, including pulsating and evolutionary theories, convective energy transport, adaptive numerical meshes, and a refined calculation of the radiative transfer.
Based on observations made with ESO telescopes at the Silla Paranal Observatory under program IDs 072.D-0419 and 073.D-0136.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

High-resolution spectroscopy for Cepheids distance determination. IV. Time series of Hα line profiles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with High-resolution spectroscopy for Cepheids distance determination. IV. Time series of Hα line profiles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-resolution spectroscopy for Cepheids distance determination. IV. Time series of Hα line profiles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1661780

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.