Mathematics – Logic
Scientific paper
Feb 1985
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1985lpsc...15..828c&link_type=abstract
(Lunar and Planetary Institute, NASA, American Geophysical Union, et al., Lunar and Planetary Science Conference, 15th, Houston,
Mathematics
Logic
26
Earth Surface, Lunar Craters, Planetary Craters, Scaling Laws, Diameters, Ejecta, Planetary Geology, Ring Structures, Structural Basins, Terraces (Landforms), Planets, Complex Craters, Cratering, Diameter, Basins, Central Uplift, Ejecta, Radius, Impacts, Moon, Earth, Morphology, Collapse, Shock, Crater Rims, Ringed Features, Formation
Scientific paper
The empirical relation between the transient crater diameter (Dg) and final crater diameter (Dr) of complex craters and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient crater reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex crater morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient crater, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex craters to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.
No associations
LandOfFree
The scaling of complex craters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The scaling of complex craters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The scaling of complex craters will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1593511