Astronomy and Astrophysics – Astronomy
Scientific paper
Mar 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005pgqa.conf..265b&link_type=abstract
Probing Galaxies through Quasar Absorption Lines, IAU Colloquium Proceedings of the International Astronomical Union 199, held M
Astronomy and Astrophysics
Astronomy
16
Scientific paper
We build a sample of O VI absorption systems in the redshift range 2.0 ≲ z ≲ 2.6 using high spectral resolution data of ten quasars from the VLT-UVES large programme. We investigate the existence of a metal-rich O VI population and define observational criteria for this class of absorbers under the assumption of photoionisation. The low temperatures of nearly half of all O VI absorbers, implied by their line widths, are too low for collisional ionisation to be a dominant process. We estimate the oxygen abundance under the assumption of photoionisation; a striking result is the bimodal distribution of [o/h] with median values close to 0.01 and 0.5 solar for the metal-poor and metal-rich populations, respectively. Using the line widths to fix the temperature or assuming a constant, low gas density does not drastically change the metallicities of the metal-rich population. We present the first estimate of the O VI column density distribution. Assuming a single power-law distribution, f(n) ∝ n-α, yields α ˜ 1.7 and a normalisation of f(n) =2.3× 10-13 at log n(O VI) ˜ 13.5, both with a ˜30% uncertainty. The value of α is similar to that found for C IV surveys, whereas the normalisation factor is about ten times higher. We use f(n) to derive the number density per unit z and cosmic density ωb(O VI), selecting a limited column density range not strongly affected by incompleteness or sample variance. Comparing our results with those obtained at z˜0.1 for a similar range of column densities implies some decline of dn/dz with z. The cosmic O VI density derived from f(n), ωb(O VI)≈ (3.5± 3.20.9) × 10-7, is 2.3 times higher than the value estimated using the observed O VI sample (of which the metal-rich population contributes ˜35%), easing the problem of missing metals at high z (˜ 1/4 of the produced metals) but not solving it. We find that the majori ty of the metal-rich absorbers are located within ˜ 450 km s-1 of strong Ly-α lines and show that, contrary to the metal-poor absorbers, this population cannot be in hydrostatic equilibrium. All of the O VI absorber properties imply that there are two distinct populations: metal-poor absorbers tracing the intergalactic medium and metal-rich absorbers associated with active sites of star formation and most probably linked to galactic winds.
Bergeron Jacqueline
Herbert-Fort Stéphane
No associations
LandOfFree
Highly ionised absorbers at high redshift does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Highly ionised absorbers at high redshift, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Highly ionised absorbers at high redshift will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1566802