Statistics – Computation
Scientific paper
May 2012
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012geoji.189..851t&link_type=abstract
Geophysical Journal International, Volume 189, Issue 2, pp. 851-862.
Statistics
Computation
Time-Series Analysis, Satellite Geodesy, Geomorphology, Antarctica
Scientific paper
The monitoring of crustal motions in Northern Victoria Land (NVL) of Antarctica by means of episodic GPS stations (EGPSs) provides an accurate and dense (˜50-km spaced) velocity field. The data, gathered starting in Austral summer 1999, derive from a series of benchmarks belonging to the Victoria Land Network for DEFormation control (VLNDEF) geodetic network. The velocity uncertainties are checked on the basis of length and returning time of the episodic surveys, to obtain a meaningful strain rate field by means of a least-square computation where the contribution of a GPS station is weighted by the inverse square of its velocity error. The study shows that the NVL is characterized by a complex kinematics and that, although three subregions with different prevailing deformational behaviour can be recognized, the single blocks cannot be resolved because too few stations exist. Only features having 150-200 km size at least can be recognized. Moreover, it is demonstrated that an appropriate data processing of EGPS data can lead to an accurate evaluation of the strain rate field even in a harsh environment like Antarctica.
Casula Giuseppe
Pesci Arianna
Teza Giordano
No associations
LandOfFree
Strain rate computation in Northern Victoria Land (Antarctica) from episodic GPS surveys does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Strain rate computation in Northern Victoria Land (Antarctica) from episodic GPS surveys, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Strain rate computation in Northern Victoria Land (Antarctica) from episodic GPS surveys will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1551972