Optimal experiment design: cross-borehole tomographic examples

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

21

Cross-Borehole Tomography, Experiment, Information, Optimal Design, Survey

Scientific paper

Experiment design optimization requires that the quality of any particular design can be both quantified and then maximized. In this study, experiment quality is defined to measure the constraints on a particular model offered by the anticipated experimental data (that is, it measures anticipated model information post-experiment). Physical and financial constraints define the space of possible experimental designs. The definitions used here require that the relationship between model parameters and data can be linearized without significant loss of information.
Two new measures of model information are introduced and compared to three previously known measures. One of the new measures can be calculated extremely efficiently allowing experiments constraining large model spaces to be designed. This efficiency trades off with a lack of sensitivity to poorly constrained parts of the model. Each measure is used independently to design a cross-borehole tomographic survey including surface sources and receivers (henceforth called nodes) which maximally constrains the interborehole velocity structure. The boreholes are vertical and the background velocity is assumed to be approximately constant. Features common to most or all optimal designs form robust design criteria-`rules of thumb'-which can be applied to design future experiments. These are:
(1) surface nodes significantly improve designs
(2) node density increases steadily down the length of each well
(3) surface node density is increased slightly around the central point between the wells
(4) average node density on the ground surface is lower than that down each well.
Three of these criteria are shown to be intuitively reasonable (the fourth is not), but the current method is quantitative and hence may be applied in situations where intuition breaks down (for example, non-vertical wells with multilateral splays; combining different data types; inversion for anisotropic model parameters). In such cases the optimal design is usually not obvious, but can be found using the quantitative methods introduced and discussed herein.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Optimal experiment design: cross-borehole tomographic examples does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Optimal experiment design: cross-borehole tomographic examples, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal experiment design: cross-borehole tomographic examples will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1448584

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.