Astronomy and Astrophysics – Astrophysics
Scientific paper
Jun 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005jgra..11006306t&link_type=abstract
Journal of Geophysical Research, Volume 110, Issue A6, CiteID A06306
Astronomy and Astrophysics
Astrophysics
31
Solar Physics, Astrophysics, And Astronomy: Flares, Ionosphere: Solar Radiation And Cosmic Ray Effects, Radio Science: Ionospheric Physics (1240, 2400), Solar Physics, Astrophysics, And Astronomy: X-Rays, Gamma Rays, And Neutrinos
Scientific paper
On 4 November 2003, the largest solar flare ever recorded saturated the GOES satellite X-ray detectors, making an assessment of its size difficult. However, VLF radio phase advances effectively recorded the lowering of the VLF reflection height and hence the lowest edge of the Earth's ionosphere. Previously, these phase advances were used to extrapolate the GOES 0.1-0.8 nm (``XL'') fluxes from saturation at X17 to give a peak magnitude of X45 +/- 5 for this great flare. Here it is shown that a similar extrapolation, but using the other GOES X-ray band, 0.05-0.4 nm (``XS''), is also consistent with a magnitude of X45. Also reported here are VLF phase measurements from two paths near dawn: ``Omega Australia'' to Dunedin, New Zealand (only just all sunlit) and NPM, Hawaii, to Ny Alesund, Svalbard (only partly sunlit), which also give remarkably good extrapolations of the flare flux, suggesting that VLF paths monitoring flares do not necessarily need to be in full daylight. D region electron densities are modeled as functions of X-ray flux up to the level of the great X45 flare by using flare-induced VLF amplitudes together with the VLF phase changes. During this great flare, the ``Wait'' reflection height, H', was found to have been lowered to ~53 km or ~17 km below the normal midday value of ~70 km. Finally, XL/XS ratios are examined during some large flares, including the great flare. Plots of such ratios against XL can give quite good estimates of the great flare's size (X45) but without use of VLF measurements.
Clilverd Mark A.
Rodger Craig J.
Thomson Neil. R.
No associations
LandOfFree
Large solar flares and their ionospheric D region enhancements does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Large solar flares and their ionospheric D region enhancements, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large solar flares and their ionospheric D region enhancements will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1399098