CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf

Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 16 figures, accepted for publication in A&A

Scientific paper

Molecular FeH provides a large number of sharp and isolated absorption lines that can be used to measure radial velocity, rotation, or magnetic field strength with high accuracy. Our aim is to provide an FeH atlas for M-type stars in the spectral region from 986 nm to 1077 nm (Wing-Ford band). To identify these lines in CRIRES spectra of the magnetically inactive, slowly rotating, M5.5 dwarf GJ1002, we calculated model spectra for the selected spectral region with theoretical FeH line data. In general this line list agrees with the observed data, but several individual lines differ significantly in position or in line strength. After identification of as many as possible FeH lines, we correct the line data for position and line strength to provide an accurate atlas of FeH absorption lines for use in high precision spectroscopy of low mass stars. For all lines, we use a Voigt function to obtain their positions and equivalent widths. Identification with theoretical lines is done by hand. For confirmation of the identified lines, we use statistical methods, cross- correlation techniques, and line intensities. Eventually, we were able to identify FeH lines from the (0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), and (4, 3) vibrational bands in the observed spectra and correct the positions of the lines if necessary. The deviations between theoretical and observed positions follow a normal distribution approximately around zero. In order to empirically correct the line strength, we determined Teff, instrumental broadening (rotational broadening) and a van der Waals enhancement factor for FeH lines in GJ1002. We also give scaling factors for the Einstein A values to correct the line strengths. With the identified lines, we derived rotational temperatures from line intensities for GJ1002. ... .

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-138931

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.