Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010spie.7740e..98z&link_type=abstract
Software and Cyberinfrastructure for Astronomy. Edited by Radziwill, Nicole M.; Bridger, Alan. Proceedings of the SPIE, Volume 7
Astronomy and Astrophysics
Astronomy
Scientific paper
Based on survey databases from different bands, we firstly employed random forest approach for feature selection and feature weighting, and investigated support vector machines (SVMs) to classify quasars from stars. Two sets of data were used, one from SDSS, USNO-B1.0 and FIRST (short for FIRST sample), and another from SDSS, USNO-B1.0 and ROSAT (short for ROSAT sample). The classification results with different data were compared. Moreover the SVM performance with different features was presented. The experimental result showed that the accuracy with FIRST sample was superior to that with ROSAT sample, in addition, when compared to the result with original features, the performance using selected features improved and that using weighted features decreased. Therefore we consider that while SVMs is applied for classification, feature selection is necessary since this not only improves the performance, but also reduces the dimensionalities. The good performance of SVMs indicates that SVMs is an effective method to preselect quasar candidates from multiwavelength data.
Zhang Yanxia
Zhao Yongheng
Zheng Hongwen
No associations
LandOfFree
Separating quasars from stars by support vector machines does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Separating quasars from stars by support vector machines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Separating quasars from stars by support vector machines will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1387980