Mg diffusion in anorthite: implications for the formation of early solar system planetesimals

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

70

Diffusion, Anorthite, Planetesimals, Calcium-Aluminum Inclusions, Magnesium, Aluminum

Scientific paper

We have measured the self diffusion coefficients of Mg, Ca, and Sr in anorthitic plagioclase in order to assess the potential of Mg isotopic heterogeneities in early solar system planetesimals to survive thermal metamorphism. Diffusion couples were constructed from polished single crystals of natural anorthite and synthetic, isotopically enriched anorthite glass. Couples were annealed at atmospheric pressure and 1200-1400°C and isotopic concentration profiles were measured with an ion microprobe. The results show that Mg diffusion in anorthite is surprisingly fast, with D Mg being over 2 orders of magnitude greater than D Sr . This indicates that the diffusion coefficient of Mg in anorthite cannot be approximated with that for Sr. Mg diffusion in the c-direction is also slightly faster than in the b-direction, while Ca and Sr diffusion appear to be isotropic. The results provide important constraints on the thermochronological history of anorthite-bearing mineral assemblages that preserve radiogenic 26 Mg excesses. In a planetesimal heated by the decay of 26 Al, the temperature at any point depends on the planetesimal size, time of formation, thermal conductivity, and depth within the planetesimal. Given sufficient heating, 26 Mg heterogeneities produced by the in-situ decay of 26 Al in Ca-, Al-rich inclusions (CAIs) and chondrules will be erased by diffusive equilibration. Using the self diffusion coefficient for Mg in anorthite measured in this study, we show that the common occurrence of 26 Mg excesses in these inclusions requires that they must be stored in small ( 15 km) bodies or the outermost rims of larger bodies for the first 1-2 million years of the solar system's history. For early formed bodies larger than 15 km, most of the mass will have been heated sufficiently for any radiogenic 26 Mg to have been diffusively homogenized in the Mg-rich planetary environment.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Mg diffusion in anorthite: implications for the formation of early solar system planetesimals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Mg diffusion in anorthite: implications for the formation of early solar system planetesimals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mg diffusion in anorthite: implications for the formation of early solar system planetesimals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1368816

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.