Leonard Medal Address: The rocks of Mars, from far and near

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

62

Scientific paper

The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote-sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except ALH84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote-sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Leonard Medal Address: The rocks of Mars, from far and near does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Leonard Medal Address: The rocks of Mars, from far and near, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Leonard Medal Address: The rocks of Mars, from far and near will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1335845

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.