Statistics
Scientific paper
Aug 1999
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999icar..140..294m&link_type=abstract
Icarus, Volume 140, Issue 2, pp. 294-312 (1999).
Statistics
40
Scientific paper
The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on the icy Galilean satellites of Jupiter. Weakening of surface materials coupled with mass movement reduces the topographic relief of landforms by moving surface materials down-slope. Throughout the Galileo orbiter nominal mission we have studied all known forms of mass movement and landform degradation of the icy galilean satellites, of which Callisto, by far, displays the most degraded surface. Callisto exhibits discrete mass movements that are larger and apparently more common than seen elsewhere. Most degradation on Ganymede appears consistent with sliding or slumping, impact erosion, and regolith evolution. Sliding or slumping is also observed at very small (100 m) scale on Europa. Sputter ablation, while probably playing some role in the evolution of Ganymede's and Callisto's debris layers, appears to be less important than other processes. Sputter ablation might play a significant role on Europa only if that satellite's surface is significantly older than 108 years, far older than crater statistics indicate. Impact erosion and regolith formation on Europa are probably minimal, as implied by the low density of small craters there. Impact erosion and regolith formation may be important on the dark terrains of Ganymede, though some surfaces on this satellite may be modified by sublimation-degradation. While impact erosion and regolith formation are expected to operate with the same vigor on Callisto as on Ganymede, most of the areas examined at high resolution on Callisto have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. The extent of surface degradation ascribed to sublimation on the outer two Galilean satellites implies that an ice more volatile than H2O is probably involved.
Asphaug Erik
Bender Kelly C.
Bierhaus Beau
Chapman Clark R.
Chuang Frank C.
No associations
LandOfFree
Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1267420