Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

NASA’s In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the “aeroassist” techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions.
Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune.
Current aerocapture technology development is advancing the maturity of each sub-system technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped “ballutes” and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1244882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.