Geologic support for the putative Borealis basin (Mega-Impact) on Mars

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5420 Impact Phenomena, Cratering (6022, 8136), 5475 Tectonics (8149), 6225 Mars

Scientific paper

A series of recent papers (all in Nature v. 453) using Martian gravity and topography [Andrews-Hanna et al., 2008], 3-D hydrodynamic simulations [Marinova et al., 2008], and 2-D hydrocode models [Nimmo et al., 2008] have eloquently reintroduced the single mega-impact hypothesis for the formation of the Martian hemispheric dichotomy boundary. Although geophysical models often return non-unique solutions, the coalition front presented by these three independent methods to test such a hypothesis lends credibility and demands further evaluation. The central tenet of these works is the proposition that an elliptical basin (long axis 10,600km, ellipticity 1.25) centered at 67N, 208E marks the pre-Tharsis crustal thickness transition and thus the real dichotomy boundary. Evaluation of this new boundary with respect to the geologic record offers new avenues, especially since geologic tests of the mega-impact hypothesis have mostly proved inconclusive because of Mars' multi-stage and multi-process geologic history. Within this survey, a slightly larger ellipse with a long axis of 12,500 km, ellipticity of 1.48, and centered at 65.3N, 250E expands the putative Borealis impact basin (which does not necessarily represent the transient or final impact cavity dimensions, but defines a potential 'affected zone') while maintaining agreement with the original observations with respect to gravity and topography. The 'affected zone' can be defined by basement structure that may become susceptible to later deformation, or it may in fact have been the paleo- topographic expression of the basin. By expanding the overall area (nearly twice the area of the original mega-impact basin proposed by Wilhelms and Squyres in 1984) several geologic features become significant in evaluating the mega-impact story. 1) Valles Marineris is concentric to the putative basin interior and parallels the ellipse margin suggesting that it is the structural manifestation of localized crustal relaxation of the Tharsis volcanic pile over pre-existing basement structure related to Borealis basin subsidence. The present day Valles Marineris may actually represent the 'missing portion' of the original crustal dichotomy trace underneath Tharsis. 2) The 'great faults' (Connerney et al., 2005) that offset the magnetic field pattern radiate from near the center of the putative basin, again suggesting basement structural control related to basin formation. 3) The mysterious Medusa Fossae Formation is completely enclosed within the basin margin and the units' southern contacts fall within 5 km of the same elliptical trace that bisects central Valles Marineris. 4) Chaos regions at the eastern end of Valles Marineris are wholly contained within the basin margin and suggest some kind of marginal control on their locations. 5) Valley network (channel) densities sharply increase outside the basin and are truncated by the Borealis ellipse. Integrating these and other geologic observations (still ongoing) with the newly formulated geophysical methods suggests that a single mega-impact is reemerging as a viable and perhaps preferred mechanism for dichotomy formation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Geologic support for the putative Borealis basin (Mega-Impact) on Mars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Geologic support for the putative Borealis basin (Mega-Impact) on Mars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geologic support for the putative Borealis basin (Mega-Impact) on Mars will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1237905

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.