Relative velocities among accreting planetesimals in binary systems: the circumprimary case

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

to appear in Icarus (accepted 30 january 2006)

Scientific paper

10.1016/j.icarus.2006.01.022

We investigate classical planetesimal accretion in a binary star system of separation ab<50AU by numerical simulations, with particular focus on the region at a distance of 1 AU from the primary. The planetesimals orbit the primary, are perturbed by the companion and are in addition subjected to a gas drag force. We concentrate on the problem of relative velocities dv among planetesimals of different sizes. For various stellar mass ratios and binary orbital parameters we determine regions where dv exceed planetesimal escape velocities v_esc (thus preventing runaway accretion) or even the threshold velocity v_ero for which erosion dominates accretion. Gaseous friction has two crucial effects on the velocity distribution: it damps secular perturbations by forcing periastron alignment of orbits, but at the same time the size--dependence of this orbital alignment induces a significant dv increase between bodies of different sizes. This differential phasing effect proves very efficient and almost always increases dv to values preventing runaway accretion, except in a narrow domain of almost circular companion orbits. The erosion threshold dv>v_ero is reached in a wide (ab,eb) space for small (<10km) planetesimals, but in a much more limited region for bigger ~50km objects. In the intermediate v_esc

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Relative velocities among accreting planetesimals in binary systems: the circumprimary case does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Relative velocities among accreting planetesimals in binary systems: the circumprimary case, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Relative velocities among accreting planetesimals in binary systems: the circumprimary case will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-122707

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.