Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 1997
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997dps....29.1907s&link_type=abstract
American Astronomical Society, DPS meeting #29, #19.07; Bulletin of the American Astronomical Society, Vol. 29, p.1006
Astronomy and Astrophysics
Astronomy
Scientific paper
We present absolutely calibrated full disk images of Jupiter obtained at the NASA Infrared Telescope Facility from June through December, 1996. The data consist of broadband and CVF images from 1.58 to 8.57 microns taken with the NSFCAM and MIRLIN instruments. Our full disk coverage over several months provides an excellent opportunity to study the evolution of 5 micron hot spots and conduct a comparative study between hot spots. Although hot spots tend to appear at regular longitudes in a wind-shifted frame relative to System III (Ortiz et al., B.A.S.S. 28: 22.05), their individual motion is more complex and can lead to errors in long term tracking of a single feature. While hot spots manifest themselves as semi-permanent features at specific longitudes, the unknown meteorology that creates them distorts the shape and varies the motion of individual spots. Therefore, a direct comparison of a feature at a given longitude may not be applicable on time scales longer than a few weeks. Our observations confirm that an individual hot spot may change significantly in morphology on time scales of weeks. Hot spots are a diverse set of features that range in peak brightness temperature from ~ 244 to ~ 252 Kelvins at 4.78 mu m in our images. Using a single scattering cloud inversion technique developed by Banfield et al. (Icarus 121: 389-410), we uniquely constrain cloud profiles between ~ 10 mbar and ~ 1 bar. We observe two hazy cloud layers over all hot spots peaking at ~ 300 mbar and <= ~ 20 mbar. We will present constraints on the main cloud level, between 1 and 1.5 bar, employing full anisotropic multiple scattering radiative transfer models of the reflected sunlight and thermal emission.
Orton Glenn S.
Stewart Sarah T.
No associations
LandOfFree
The Cloud Structure and Morphology of Jovian Equatorial Hot Spots does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Cloud Structure and Morphology of Jovian Equatorial Hot Spots, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Cloud Structure and Morphology of Jovian Equatorial Hot Spots will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1188238