Gauge Freedom in Orbital Mechanics

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Talk at the annual Princeton conference ``New Trends in Astrodynamics" 2005 http://www.math.princeton.edu/astrocon/

Scientific paper

10.1196/annals.1370.016

In orbital and attitude dynamics the coordinates and the Euler angles are expressed as functions of the time and six constants called elements. Under disturbance, the constants are endowed with time dependence. The Lagrange constraint is then imposed to guarantee that the functional dependence of the perturbed velocity on the time and constants stays the same as in the undisturbed case. Constants obeying this condition are called osculating elements. The constants chosen to be canonical are called Delaunay elements, in the orbital case, or Andoyer elements, in the spin case. (As some Andoyer elements are time dependent even in the free-spin case, the role of constants is played by their initial values.) The Andoyer and Delaunay sets of elements share a feature not readily apparent: in certain cases the standard equations render them non-osculating. In orbital mechanics, elements furnished by the standard planetary equations are non-osculating when perturbations depend on velocities. To preserve osculation, the equations must be amended with extra terms that are not parts of the disturbing function. In the case of Delaunay parameterisation, these terms destroy canonicity. So under velocity-dependent disturbances, osculation and canonicity are incompatible. (Efroimsky and Goldreich 2003, 2004) Similarly, the Andoyer elements turn out to be non-osculating under angular-velocity-dependent perturbation. Amendment of only the Hamiltonian makes the equations render nonosculating elements. To make them osculating, more terms must enter the equations (and the equations will no longer be canonical). In practical calculations, is often convenient to deliberately deviate from osculation by substituting the Lagrange constraint with a condition that gives birth to a family of nonosculating elements.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Gauge Freedom in Orbital Mechanics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Gauge Freedom in Orbital Mechanics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gauge Freedom in Orbital Mechanics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-117975

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.