Solar Rotation Stereoscopy in Microwaves

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

35

Sun: Activity, Sun: Corona, Sun: Radio Radiation, Sun: Rotation

Scientific paper

We present here the first stereoscopic altitude measurements of active region sources observed at microwave frequencies (10-14 GHz The active region NOAA 7128 was observed with the Owens Valley Radio Observatory (OVRO) on 1992 April 13, 14, 15, and 16 as it passed through the central meridian. From white-light data of the underlying sunspot we determined the rotation rate of the active region, which was found to have a relative motion of dL/dt = +0°.240 day-1 with respect to the standard photospheric differential rotation rate. Based on this rotation rate we determine for the microwave sources stereoscopic altitudes of 3.3-11.0 Mm above the photosphere. The altitude spectrum h(v) of the right circular polarization (RCP) main source shows a discontinuity at 12 GHz and can be satisfactorily fitted with a dipole model with a transition from the second to the third harmonic level at 12 GHz. The dominance of the third harmonic for frequencies above 12 GHz occurs because the second harmonic level drops below the transition region, at a height of 2.6±0.6 Mm according to the microwave data. The altitude spectrum h(v) serves also to invert the temperature profile T(h) from the optically thick parts of the radio brightness temperature spectrum TB(ν[h]). The microwave emission in both circular polarizations can be modeled with gyroresonance emission, with x-mode for RCP and o-mode in LCP, with the same harmonics at each frequency, but different emission angles in both modes. The contributions from free-free emission are negligible in both polarizations, based on the peak emission measure of EM ≍ 6 × 1028 cm-5 observed in soft X-rays by Yohkoh/SXT.
This study demonstrates that the height dependence of the coronal magnetic field B(h) and the plasma temperature T(h) in an active region can be inverted from the stereoscopic altitude spectra h(v) and the observed brightness temperature spectra TB(ν).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Solar Rotation Stereoscopy in Microwaves does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Solar Rotation Stereoscopy in Microwaves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Solar Rotation Stereoscopy in Microwaves will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1179699

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.