Mathematics – Number Theory
Scientific paper
2008-12-30
Mathematics
Number Theory
23 pages
Scientific paper
We determine the (arithmetic) local monodromy at 0 and at $\infty$ of the Kloosterman sheaf using local Fourier transformations and Laumon's stationary phase principle. We then calculate $\epsilon$-factors for symmetric products of the Kloosterman sheaf. Using Laumon's product formula, we get functional equations of $L$-functions for these symmetric products, and prove a conjecture of Evans on signs of constants of functional equations.
Fu Lei
Wan Daqing
No associations
LandOfFree
Functional Equations of $L$-Functions for Symmetric Products of the Kloosterman Sheaf does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Functional Equations of $L$-Functions for Symmetric Products of the Kloosterman Sheaf, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functional Equations of $L$-Functions for Symmetric Products of the Kloosterman Sheaf will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-117372