Cold Cloud Infall and Galaxy Formation

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Hydrodynamics, Origin, Formation, Evolution, Age, And Star Formation, X-Ray Binaries, X- And Gamma-Ray Telescopes And Instrumentation, Galactic Halo, Spiral Galaxies

Scientific paper

We present a pair of high-resolution SPH (smoothed particle hydrodynamics) simulations that explore the nature of cool gas infall into galaxies, and the physical conditions necessary to support the type of gaseous halos that seem to be required by observations. Observations of local X-ray absorbers, high-velocity clouds, and distant quasar absorption line systems suggest that a significant fraction of baryons may reside in multi-phase, low-density, extended, ~100 kpc, gaseous halos around normal galaxies. The two simulations are identical other than their initial gas density distributions: one is initialized with a standard hot gas halo that traces the cuspy profile of the dark matter, and the other is initialized with a cored hot halo with a high central entropy, as might be expected in models with early pre-heating feedback. Galaxy formation proceeds in dramatically different fashions in these two cases. While the standard cuspy halo cools rapidly, primarily from the central region, the cored halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. After 10 Gyr of cooling, the X-ray luminosity of the standard halo is ~100 times current limits and the resultant disk galaxy is twice as massive as the Milky Way. In contrast, the cored halo has an X-ray luminosity that is in line with observations, an extended cloud population reminiscent of the high-velocity cloud population of the Milky Way, and a disk galaxy with half the mass and ~50% more specific angular momentum than the disk formed in the low-entropy simulation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Cold Cloud Infall and Galaxy Formation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Cold Cloud Infall and Galaxy Formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cold Cloud Infall and Galaxy Formation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1170886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.