Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995apj...447..496c&link_type=abstract
Astrophysical Journal v.447, p.496
Astronomy and Astrophysics
Astronomy
27
Galaxies: Active, Line: Profiles, Galaxies: Quasars: General, Galaxies: Quasars: Emission Lines
Scientific paper
The broad optical and ultraviolet emission lines of QSOs and active galactic nuclei (AGNs) display both redward and blueward asymmetries. This result is particularly well established for Hβ and C IV λ1549, and it has been found that Hβ becomes increasingly redward asymmetric with increasing soft X-ray luminosity. Two models for the origin of these asymmetries are investigated: (1) Anisotropic line emission from an ensemble of radially moving clouds, and (2) Two-component profiles consisting of a core of intermediate (˜1000-4000 km s-1) velocity width and a very broad (˜5000-20,000 km s-1) base, in which the asymmetries arise due to a velocity difference between the centroids of the components. The second model is motivated by the evidence that the traditional broad-line region is actually composed of an intermediate-line region (ILR) of optically thick clouds and a very broad line region (VBLR) of optically thin clouds lying closer to the central continuum source. Line profiles produced by model (1) are found to be inconsistent with those observed, being asymmetric mainly in their cores, whereas the asymmetries of actual profiles arise mainly from excess emission in their wings. By contrast, numerical fitting to actual Hβ and C IV λ1549 line profiles reveals that the majority can be accurately modeled by two components, either two Gaussians or the combination of a Gaussian base and a logarithmic core. The profile asymmetries in Hβ can be interpreted as arising from a shift of the base component over a range ˜6300 km s-1 relative to systemic velocity as defined by the position of the [O III] λ5007 line. A similar model appears to apply to C IV λ1549.
The correlation between Hβ asymmetry and X-ray luminosity may thus be interpreted as a progressive red- shift of the VBLR velocity centroid relative to systemic velocity with increasing X-ray luminosity. This in turn suggests that the underlying effect is gravitational red shift, as soft X-ray emission arises from a region ˜ light-minutes in size and arguably traces the mass of the putative supermassive black hole. Depending on the size of the VBLR and the exact amount of its profile centroid shift, central masses in the range 109-10 Msun are implied for the objects displaying the strongest redward profile asymmetries, consistent with other estimates. The largest VBLR velocity dispersions measured from the two-component modeling are ˜20,000 km s-1, which also yields a virial mass ˜109 Msun for a VBLR size 0.1 pc. The gravitational redshift model does not explain the origin of the blueshift of the VBLR emission among low X-ray luminosity sources, however. This must be interpreted as arising from a competing effect such as electron scattering of line photons in the vicinity of the VBLR.
On average, radio-loud objects have redward asymmetric broad-line profiles and stronger intermediate- and narrow-line emission than radio-quiet objects of comparable optical luminosity. Under the gravitational redshift model these differences may be interpreted as the result of black hole and host galaxy masses that are larger on average among the former class, consistent with the evidence that they are merger products.
No associations
LandOfFree
QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1170248