Development of the Long Valley rhyolitic magma system: strontium and neodymium isotope evidence from glasses and individual phenocrysts

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9

Scientific paper

Pre-caldera high-silica rhyolites of Glass Mountain and the voluminous, zoned rhyolitic Bishop Tuff record the evolution of a magma system from initiation at 2.1 Ma to 0.76 Ma. Pre-1.2 Ma Glass Mountain lavas formed rapidly in two differentiation events recorded by regionally controlled Rb-Sr isochrons at ~2.1 and 1.9 Ma. Younger, post-1.2 Ma Glass Mountain lavas have Nd isotope ratios distinct from the older Glass Mountain lavas and also define two regionally controlled Rb-Sr isochrons, 1.09 ± 0.03 Ma and 1.15 ± 0.01 Ma, that have distinct initial ratios: 0.7057 ± 1 and 0.7060 ± 1, respectively. These lavas have eruption ages as young as 0.79 Ma and therefore provide evidence of magma residence times of up to 360 kyr, comparable to that recorded in the older Glass Mountain lavas. Neodymium isotope compositions of sanidine and plagioclase from the younger Glass Mountain lavas and late erupted Bishop Tuff are within error ( Nd - 1). Sanidine and plagioclase from the younger Glass Mountain lavas yield glass-mineral Rb-Sr isotope ages close to those of the younger regional isochrons, the exception being feldspar rims which yield ages close to the time of lava eruption. This suggests that feldspar phenocrysts were stored in the magma chamber for up to 300 kyr with little mineral growth until close to the time of eruption when minerals rims were formed. In contrast, feldspars from the early Bishop Tuff form two populations with Sr-Nd isotope systematics implying derivation from magmas that formed the older and younger Glass Mountain lavas. Feldspar rims give ages close to Bishop Tuff eruption. Strontium elemental and isotope zonation suggest that the feldspar populations from the Bishop Tuff represent xenocrytic material that may have resided in the Long Valley magma chamber(s) for up to 1.3 Myr prior to eruption of the Bishop Tuff.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Development of the Long Valley rhyolitic magma system: strontium and neodymium isotope evidence from glasses and individual phenocrysts does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Development of the Long Valley rhyolitic magma system: strontium and neodymium isotope evidence from glasses and individual phenocrysts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Development of the Long Valley rhyolitic magma system: strontium and neodymium isotope evidence from glasses and individual phenocrysts will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1075458

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.