Aqueous Alteration of the Grosnaja CV3 Carbonaceous Chondrite

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5

Chlorite, Chondrites, Carbonaceous, Grosnaja, Metamorphism, Olivine Defects, Saponite, Serpentine, Tem

Scientific paper

Previous petrographic studies have shown that aqueous alteration products are locally well developed in some of the CV3 falls [e.g., 1-3]. In this abstract, we describe our transmission electron microscope (TEM) study of the extent of aqueous alteration in matrix and in chondrules in the Grosnaja CV3 carbonaceous chondrite. Grosnaja is an observed fall and belongs to the oxidized subgroup of the CV chondrites [4]. We obtained fragments of Grosnaja from the Naturhistorisches Museum in Vienna. Regions of interest were extracted from polished thin sections and prepared for TEM observation by ion milling. Quantitative energy-dispersive X-ray (EDX) analyses were obtained using a JEOL 2000FX TEM equipped with a LINK thin- window EDX detector. Grosnaja has undergone aqueous alteration, which has resulted in the formation of phyllosilicates in matrix and in chondrules. The suprising result from Grosnaja is that three different types of phyllosilicates are intimately intergrown. Serpentine is the most abundant phyllosilicate in matrix and occurs as fine-grained packets along grain boundaries and as fracture-fillings and veinlets that cross cut olivine and pyroxene grains. Mixed with the serpentine are packets of fine-grained phyllosilicates with a distinct 1.4-nm basal spacing that is probably a chlorite group mineral. Rare packets of smectite occur as epitaxial intergrowths with olivine, but are not interstratified with serpentine as observed in the CI chondrites. Phyllosilicates in Grosnaja matrix occur with Mg-rich carbonates, fine-grained magnetite, chromite and pentlandite, and poorly-crystalline FeNi- oxide/hydroxides, which stain the matrix a brownish-red color. Some of the rust may be of terrestrial origin (Grosnaja fell in 1861). Although the matrix phyllosilicates are too small to obtain single-phase chemical analyses in the TEM, quantitative EDX analyses suggest that the serpentine contains significant Fe (Mg/Mg + Fe ~0.5). The serpentine/chlorite forms as an alteration product of matrix olivine. Olivine in matrix is equilibrated (Fa(sub)50). The matrix olivines contain numerous planar defects along (100) planes, which results in strong streaking along a* in electron diffraction patterns. These planar defects in matrix olivines are common in other CV chondrites, including Bali [3] and Mokoia [1]. Chondrule mesostasis is extensively altered to coarse-grained Na-saponite that is coherently interstratified with a 1.4-nm phyllosilicate (as shown by selected-area electron diffraction patterns). The 1.4-nm layers occur individually and in groups up to five layers wide. Serpentine has not been observed in chondrules. The Mg/Mg + Fe (atomic) ratio for the saponite is ~0.9, the same as for the host chondrule olivines. The formation of phyllosilicates in Grosnaja was controlled by local bulk compositions. The abundance of Na and Al in chondrule mesostasis stabilized Na-saponite, while in matrix, the high olivine content resulted in formation of serpentine. Grosnaja is unusual for a CV chondrite in that the dominant phyllosilicates in matrix are serpentine and chlorite, whereas smectite is the dominant phyllosilicate for the other altered CV chondrites [3]. This result suggests that alteration conditions were different for Grosnaja relative to the other CV falls. We believe that the occurrence of chlorite in both matrix and chondrules indicates alteration at temperatures higher than those experienced by the other altered CV chondrites. The heat source for the alteration reactions may be related to the thermal event that equilibrated matrix olivines. Acknowledgements: We thank G. Kurat of the Naturhistorisches Museum for samples of Grosnaja. This work was supported by NASA RTOPs 152-17-40-23 and 199-52-11-02. References: [1] Tomeoka K. and Buseck P. R. (1990) GCA, 54, 1745. [2] Keller L. P. and Buseck P. R. (1990) GCA, 54, 2113. [3] Keller L. P. and Thomas K. L. (1991) LPS XXII, 705. [4] McSween H. Y. (1977) GCA, 41, 1777.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Aqueous Alteration of the Grosnaja CV3 Carbonaceous Chondrite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Aqueous Alteration of the Grosnaja CV3 Carbonaceous Chondrite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aqueous Alteration of the Grosnaja CV3 Carbonaceous Chondrite will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1072955

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.