Other
Scientific paper
Jul 1993
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1993metic..28q.361h&link_type=abstract
Meteoritics, vol. 28, no. 3, volume 28, page 361
Other
Anorthosite, Ferroan Anorthosite, Highlands, Lunar, Impacts, Lunar Crust, Moon, Multi-Ringed Basins
Scientific paper
Introduction: A major unresolved question is whether there is an enrichment in plagioclase in the lunar crust. If a magma ocean once existed on the Moon, an anorthositic crust should have been formed by plagioclase floatation. Therefore, it is important to determine the distribution and modes of occurrence of anorthosite on the lunar surface. We have been conducting remote sensing studies of impact deposits to investigate the composition and stratigraphy of the lunar crust [1-4]. Numerous deposits of pure anorthosite (plagioclase >90%) have been identified, and an interesting pattern has emerged. Distribution and Modes of Occurrence: Orientale Basin region. With the exception of the Inner Rook massifs, all the highlands units associated with the Orientale basin appear to be composed of either noritic anorthosite or anorthositic norite. Our spectral data indicate that the Inner Rook ring of the Orientale basin is a mountain range composed of pure anorthosite [1,2]. Grimaldi Basin region. Spectra obtained for the inner ring of Grimaldi indicate that this feature is composed, at least in part, of pure anorthosite [2]. Another anorthosite deposit has been identified just inside the outer Grimaldi ring. This material was excavated from beneath the basin floor material by subsequent impacts. Humorum Basin region. At least a portion of the mare-bounding ring of Humorum is composed of anorthosite [2,4]. However, the entire ring is not composed of anorthosite, and to date, no anorthosites have been identified on the outer Humorum rings. Nectaris Basin region. While noritic anorthosites and anorthositic norites are the dominant rock types in the region, anorthosite deposits have been identified [3]. Anorthosite occurs in two areas on the east wall of Kant crater, which is located on a platform massif of the main Nectaris basin ring, in two areas within Cyrillus A and in Bohnenberger F. In addition, Pieters [5] found additional anorthosite deposits in the central peaks of Theophilus and Piccolomini craters. Anorthosites have now been located on, or very near, the four innermost rings of Nectaris. Northern Highlands. Recent studies utilizing both Earth-based spectra and Galileo SSI suggest that pure anorthosite is exposed within Goldschmidt crater and west of Thales [6]. Both areas are plains units that have been affected by nearby large Copernican craters (Thales and Anaxagoras). Other occurrences. Anorthosites have also been identified in the central peaks of Alphonsus and Petavius [5,7]. Both of these craters are very near major rings of ancient impact basins. Discussion: To date, anorthosites have only been identified in a relatively narrow belt in the southern highlands, extending from Petavius in the east to the Inner Rook Mts. on the western limb, and at two locations in the far north. Extensive spectral studies of many nearside regions (e.g., north central highlands, Imbrium) have failed to reveal additional deposits of pure anorthosite. Lunar anorthosite deposits are almost always found on or very near basin rings. This association is significant only for the inner rings of basins such as Grimaldi and Orientale. These rings were derived from beneath more mafic-rich layers in the pre- impact target sites. In contrast, the anorthosites associated with the outer rings of Nectaris and other basins are generally found in the central peaks and walls of large impact craters. It appears that these anorthosites were derived from layers many kilometers beneath the crater target sites and that the surfaces of these outer rings are not composed of anorthosite. References: [1] Spudis P. D. et al. (1984) Proc. LPSC 15th, in JGR, 89, C197. [2] Hawke B. R. et al. (1991) GRL, 18, 2141. [3] Spudis P. D. et al. (1989) LPSC XIX, 51. [4] Hawke B. R. et al. (1993) GRL, 20, 419. [5] Pieters C. M. (1986) Rev. Geophys., 24, 557. [6] Pieters C. M. et al. (1993) LPS XXIV, 1141. [7] Coombs C. R. et al. (1990) LPSC XX, 161.
Hawke Bernard Ray
Jeffrey Taylor G.
Lucey Paul G.
Peterson Charlotte A.
Spudis Paul D.
No associations
LandOfFree
The Distribution and Modes of Occurrence of Anorthosite on the Moon does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Distribution and Modes of Occurrence of Anorthosite on the Moon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Distribution and Modes of Occurrence of Anorthosite on the Moon will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1072504