Astronomy and Astrophysics – Astronomy
Scientific paper
May 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995aas...186.2110m&link_type=abstract
American Astronomical Society, 186th AAS Meeting, #21.10; Bulletin of the American Astronomical Society, Vol. 27, p.839
Astronomy and Astrophysics
Astronomy
Scientific paper
The second order perturbation method developed by Maheswaran (1968,MNRAS,140,93) for computing meridional circulation velocities is reviewed. The equations, after corrections are made for a misprint and a missing term, are improved to include different opacity laws. It is shown these equations can be used in radiative diffusion zones of uniformly rotating stars, where viscosity is negligible and the circulation speed is small compared with the rotation speed. Numerical results for different models of A stars are presented and discussed. It is seen that the opacity law influences the circulation pattern. For an upper main sequence star, the radiative diffusion zone, Z, is taken to be that part of the radiative envelope where radiation may be described by the diffusion equation. Z is bounded by a surface, S_1, that is taken just outside the core-envelope boundary, and by a surface, S_2, at which the local diffusive form of radiation ceases to be valid. The boundary conditions used for the velocities are the same as in Maheswaran 1968, where the total flow of mass across each of S_1 and S_2 is zero, in a steady state. For the radiative regions outside Z, a more detailed treatment that includes viscosity, the coriolis force and turbulence together with boundary layer theory must be used, such as in Tassoul and Tassoul (1995, ApJ, 440, 789). However, there are some questions about the optical depth at which a boundary layer is established near the photosphere and how the radiation process should be treated in the surface region outside Z. This work was supported by a UW Centers sabbatical leave grant.
No associations
LandOfFree
Meridional Circulation in Radiative Diffusion Zones of Rotating Stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Meridional Circulation in Radiative Diffusion Zones of Rotating Stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Meridional Circulation in Radiative Diffusion Zones of Rotating Stars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1057297