Astronomy and Astrophysics – Astrophysics
Scientific paper
2004-06-24
Astrophys.J. 613 (2004) 200-223; Erratum-ibid. 635 (2005) 1370-1372
Astronomy and Astrophysics
Astrophysics
32 pages, 15 figures, accepted for publication in the Astrophysical Journal
Scientific paper
10.1086/422901
We present results from the Hubble Higher-z Supernova Search, the first space-based open field survey for supernovae (SNe). In cooperation with the Great Observatories Origins Deep Survey, we have used the Hubble Space Telescope with the Advanced Camera for Surveys to cover 300 square arcmin in the area of the Chandra Deep Field South and the Hubble Deep Field North on five separate search epochs (separated by 45 day intervals) to a limiting magnitude of z'=26. These deep observations have allowed us to discover 42 SNe in the redshift range 0.2 < z < 1.6. As these data span a large range in redshift, they are ideal for testing the validity of Type Ia supernova progenitor models with the distribution of expected ``delay times,'' from progenitor star formation to SN Ia explosion, and the SN rates these models predict. Through a Bayesian maximum likelihood test, we determine which delay-time models best reproduce the redshift distribution of SNe Ia discovered in this survey. We find that models that require a large fraction of ``prompt'' (less than 2 Gyr) SNe Ia poorly reproduce the observed redshift distribution and are rejected at 95% confidence. We find that Gaussian models best fit the observed data for mean delay times in the range of 3 to 4 Gyr.
Blondin Stephan
Casertano Sefano
Challis Peter
Chornock Ryan
Dahlen Tomas
No associations
LandOfFree
The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Hubble Higher-Z Supernova Search: Supernovae to z=1.6 and Constraints on Type Ia Progenitor Models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-101110