Determining the Neutrino Mass Hierarchy with Cosmology

Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 6 figures, 3 tables

Scientific paper

10.1103/PhysRevD.80.123509

The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are non-degenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierachy. Finally we show that if a particular neutrino hierachy is assumed then this could bias cosmological parameter constraints, for example the dark energy equation of state parameter, by > 1\sigma, and the sum of masses by 2.3\sigma.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Determining the Neutrino Mass Hierarchy with Cosmology does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Determining the Neutrino Mass Hierarchy with Cosmology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Determining the Neutrino Mass Hierarchy with Cosmology will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-100004

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.