Nonlinear Sciences – Exactly Solvable and Integrable Systems
Scientific paper
2004-06-16
Nonlinear Sciences
Exactly Solvable and Integrable Systems
22 pages, 5 figures, some minor corrections and added one section on the KdV N-soliton solutions
Scientific paper
10.1088/0305-4470/37/46/006
We consider $N$-soliton solutions of the KP equation, (-4u_t+u_{xxx}+6uu_x)_x+3u_{yy}=0 . An $N$-soliton solution is a solution $u(x,y,t)$ which has the same set of $N$ line soliton solutions in both asymptotics $y\to\infty$ and $y\to -\infty$. The $N$-soliton solutions include all possible resonant interactions among those line solitons. We then classify those $N$-soliton solutions by defining a pair of $N$-numbers $({\bf n}^+,{\bf n}^-)$ with ${\bf n}^{\pm}=(n_1^{\pm},...,n_N^{\pm}), n_j^{\pm}\in\{1,...,2N\}$, which labels $N$ line solitons in the solution. The classification is related to the Schubert decomposition of the Grassmann manifolds Gr$(N,2N)$, where the solution of the KP equation is defined as a torus orbit. Then the interaction pattern of $N$-soliton solution can be described by the pair of Young diagrams associated with $({\bf n}^+,{\bf n}^-)$. We also show that $N$-soliton solutions of the KdV equation obtained by the constraint $\partial u/\partial y=0$ cannot have resonant interaction.
No associations
LandOfFree
Young diagrams and N-soliton solutions of the KP equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Young diagrams and N-soliton solutions of the KP equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Young diagrams and N-soliton solutions of the KP equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-219478